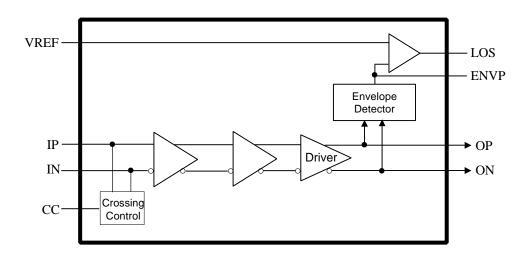
High-Speed Data Communication LA310Z – 8.3 GHz Differential Limiting Amplifier 16-pin Plastic QFN Package


PRODUCT DESCRIPTION

The LA310Z is an ultra-broadband fully differential limiting amplifier designed for high-speed wide-band communication applications up to 10 Gb/s. The amplifier has an excellent input sensitivity of 2.5 mVpp and a small-signal bandwidth of 8.3 GHz. Its wide bandwidth and high sensitivity ensure a low bit error rate in high-speed data communication. The device features $100-\Omega$ differential impedances at both the inputs and outputs. Its lost-of-signal detector can warn the receiver as the incoming signal is too small for a certain bit error rate. The device can be used as an input sensing amplifier, a repeater, and a wide-band single-ended-to-differential converter.

KEY FEATURES

- 39-dB differential gain
- 8.3 GHz bandwidth
- < 2.5 mV_{pp} single-ended/differential input sensitivity
- Differential $100-\Omega$ inputs and outputs
- 750m-V_{pp} maximum differential output swing
- Lost-of-Signal (LOS) detector
- Output waveform envelope detector
- Output waveform crossing control
- Power consumption: 0.3 W with +5 V single power supply

BLOCK DIAGRAM

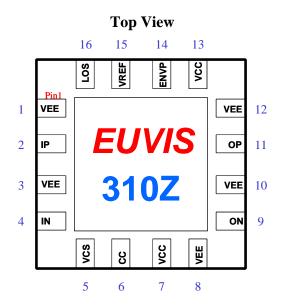
ELECTRICAL SPECIFICATIONS

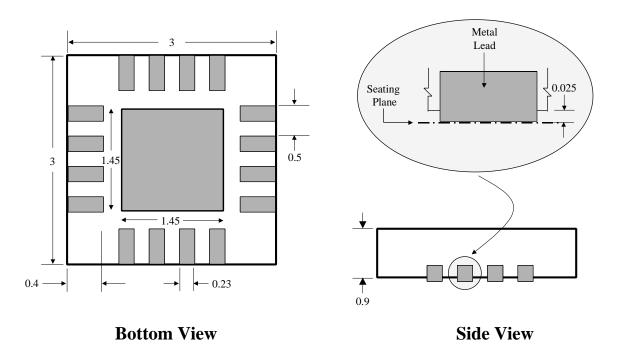
Testing Condition: $V_{CC} = 5 \text{ V}$

Parameter	Symbol	Min	Typical	Max	Unit
Operating Temperature	T_o	-40	25	85	°C
Small-Signal Max Gain ¹	$G_{o,max}$		39		dB
Small-Signal 3-dB Bandwidth	$f_{3dB,max}$		8.3		GHz
Output Swing ¹ (R_L =50 Ω)			750		mV_{pp}
Diff. Input Return Loss ²	RL_I		10		dB
Diff. Output Return Loss ²	RL_O		12		dB
Output Rise Time ³	T_r		30		ps
Output Fall Time ³	T_f		25		ps
Output Overshoot			0		%
Output Jitter, RMS ⁴			1.4		ps
Sensitivity ⁵	V_{sen}		2.5		mV_{pp}
Output DC Offset ⁶	$V_{o\!f\!f}$		5		mV
Positive V _{CC} supply Voltage	V_{CC}	4.5	5	5.5	V
Positive V _{CC} supply Current	I_{total}	50	63	70	mA

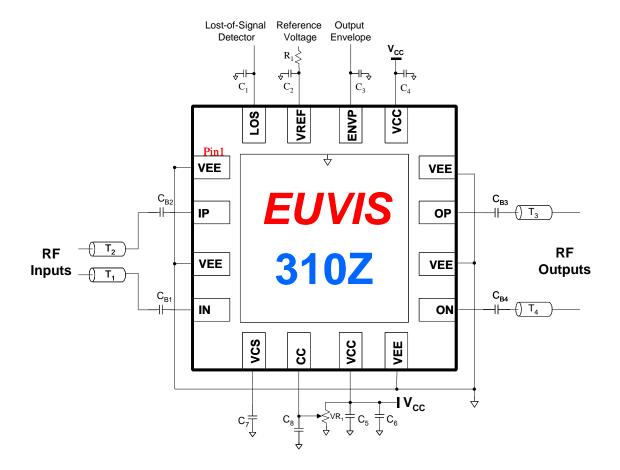
 $^{1} \text{ differential I/O}$ $^{2} \text{ DC to } f_{3dB}$ $^{3} 20\% \sim 80\%$ $^{4} \text{ for Input 500 mVpp,single ended}$ $^{5} \text{ where bit error rate} < 10^{-12} \text{ with } 2^{31} \text{-1 pseudo-random data}$ $^{6} \text{ measured with zero inputs}$

TERMINAL DESCRIPTION


Name	Function	I/O	Signal
VEE	Ground		DC
VCC	Power, +5 V		DC
IP	Data Input+	I	RF
IN	Data Input–	I	RF
CC	Output Crossing Control	I	DC
OP	Output +	O	RF
ON	Output –	O	RF
LOS	Lost-Of-Signal Detector	O	DC
VCS	VCS Generator Bypass	O	DC
ENVP	Output Swing Envelope	О	DC
VREF	Reference Voltage for LOS	I	DC


PIN ARRANGEMENTS AND PACKAGE INFORMATION

• Unit: mm


Package Format: 16-pin QFNPackage Size: 3 mm x 3 mm

• Pin Pitch: 0.5 mm

TYPICAL CONNECTION

Notes:

 V_{CC} is +5 V

V_{EE}'s are connected to power supply and package ground

Center pad of package is connected to ground

 T_1 and T_2 : 100- Ω differential transmission lines

 T_3 and T_4 : 50- Ω single-ended transmission lines or 100- Ω differential transmission lines

 VR_1 : 50-k Ω potentiometer

 R_1 : 1-k Ω surface-mount resistor

 $C_1 \sim C_5$ and C_8 : 100-nF surface-mount capacitors

C₇: 100-pF surface-mount capacitor

C₆: 10-µF capacitor

 $C_{B1} \sim C_{B4}$: 100-nF by-pass surface-mount capacitors

Euvis

Ordering Information:

Email to: Sales@euvis.com

Or call: (805) 583-9888 x108 Sales Department

Or fax: (805) 583-9889

The information contained in this document is based on simulation results. Characteristic data and other specifications are subject to change without notice. Customers are advised to confirm information in this advanced datasheet prior to using this information or placing the order.

Euvis Inc. does not assume any liability arising from the application or use of any product or circuit described herein, neither does it convey any license under its patents or any other rights.