

DSM API MANUAL
Ver 2.2

Copyright © 2008 Euvis Inc.

Getting Started -
This section will give you a general overview of the program writing process. The API Reference page will
show you the necessary steps needed to include the API in your program. The Intermediate Class page gives
examplesthat will help you in writing your own intermediate classes. The Basic Structure page will show you
the general order of commands that every chirp should adhere to. Please use the menu on the left to navigate
to the desired page.

API Reference -
The API file, DSM_CLR.DLL is implemented with the CLR (Common Language Runtime) support. Languages
targeting the runtime, such as C++/CLI, C#, Visual Basic, Jscript, J# and IL (Intermediate Language)
assembler, can be used to reference the DSM API. In this manual, we use C++/CLI (with CLR-support) to
demonstrate examples. Other languages can be applied in similar ways.

There is no need for header files or declarations of the API in CLR-supported code. The API can be referenced
by adding the DSM_CLR.DLL to References (see below). All the available members, properties and methods,
can be identified by using the object browser. In order to use the DSM API, the users' applications need to use
the CLR-support option in compiling the codes which use the DSM API. It's not required to recompile all the
code but only the code using the API need to be compiled with the CLR-support option. To compile the
existing code with CLR-support, simply open the Property of the concerning source codes and select
Common Languag Runtime Support under C/C++:General:Compile with Common Language
Runtime Support. If you are just beginning a new project, simply create the project with CLR support. The
following is an example to create a new CLR Console C++ project in Visual Studio.

» Go to File --> New Project.

» The New Project window will open. Expand Visual C++ then click on CLR. Select CLR Console
Application under Templates. Make sure the Location is correct and give the project a name. Once you are
done, click on OK.

» The code source should open with a sample "Hello World" program.

Now we need to add DSM_CLR.dll to the references of your solution in Visual Studio.

» Right click your solutions file in the Solution Explorer. Your solution will probably be called something different
than the one shown.

» Click on Properties near the bottom of the pop out menu.

» A new Property window will appear. Click on the "+" next to Common Properties at the top on the left column.

» Click on References. Now click on the Add New Reference button.

» Click on the Browse tab and then browse to the main DSM directory. By default the directory is C:\Program
Files\Euvis\DSM. Once you get to the directory, double click on DSM_CLR.dll then click OK.

» DSM_CLR should now be listed under References along with its path.

The DSM_CLR file provides you with two classes to create and control waveforms. The two classes are DSMX
and DSM_Group_API. To view these two classes open up the Object Browser in Visual Studio. Expand
DSM_CLR and then expand MOL::DSM. You should now see five items under MOL::DSM including the two
classes of interest: DSMX and DSM_Group_API.

If you click on DSM_Group_API you can see all its members.

Likewise for DSMX.

In order to use the two classes, you most use the "using" directive to include the DSM namespace.

 using namespace MOL::DSM;

Intermediate Class -
The API provided to you has direct access to the hardware functions on the DSM board. It gives you access
not only to methods but also properties as well. We recommend that you create intermediate classes to
interact with the API methods and properties. All of our examples in the Examples section utilizes two
intermediate classes: "MyGroup" and "MyDSM". The intermediate "MyGroup" class interacts with the
DSM_Group_API class while the "MyDSM" class interacts with the DSMX class. Notice that in both "MyGroup"
and "MyDSM" the underlying API classes, DSM_Group_API and DSMX, are marked as "private" so that users
do not see them at all. These two intermediate classes are declared in the header files below. The dsmgroup.h
file contains the "MyGroup" class while the cldsm.h file contains the "MyDSM" class.

dsmgroup.h
cldsm.h

Implementation files:

dsmgroup.cpp
cldsm.cpp

The above two classes of course are just examples. You can make the intermediate classes however you
want. For a description of all the methods and properties please go to the Methods section and Properties
section respectively.

Basic Structure -
For each chirp that is done by the DSM, the controlling program should adhere to the following structure:

Intialization of board(s)1.
Configure control settings2.
Waveform parameter definitions3.
Download data4.
Start DSM memory5.
Stop memory when complete (optional)6.

Intialization of board(s)

The initialization of the DSM board only needs to be done once in a program assuming that the DSM is not
disconnected. Initialization must be done first before all other steps. Initialization is a multiple step process.
First you should find out how many DSM boards are connected by reading the number property in the
DSM_Group_API class. Then call the get_sn member function in the DSM_Group_API class to get the
board Series Number. The next step is the most important step in the entire DSM program writing process:
after you have instantiated a DSMX object, you must initialize it by calling the ini with the board Series
Number as argument. Simply having an DSMX object without calling the ini method will likely cause your
program to fail.

Always call the ini function immediately after instantiating a DSMX object!

Configure control settings

Control instructions should be redefined everytime a new chirp is implemented. The reason for this is that
the DSM will carry over settings from one chirp to the next chirp. Even if two chirps have the same settings
you should redefine the settings just in case.

First set the mode (either Free Run, Master or Slave) and the related multi-board settings:

Mode Settings Implementation
Slave Enable/Disable: slave_mode

Loop Count: loop_count

Auto-Arm Enable/Disable auto_armed

SYNCO Enable/Disable synco_enable

Internal SYNCI Enable/Disable synci_enable

Then set the general control settings that apply to all modes:

Control Settings Implementation
Oversampling Factor: over_sampling_rate

Marker Enable/Disable: marker_enable

Page: page

Data Length Enable/Disable: data_lenght_enable

Phase Reset by Memory Enable/Disable: dds_reset_by_memory

Waveform parameter definitions

There are three ways you can set up your waveforms. The easiest way is to just define waveform parameters
using the built-in waveform properties:

Built-In Waveform Parameters Implementation
Start frequency: chirp1

Stop frequency: chirp2

Step frequency: chirp3

Waveform code: code

Delay delay

When we talk about the "built-in waveform" we are referring to a waveform that was constructed using these
five parameters.

The second way to define a waveform is to use the user_define_bulk function.

The final way to define a waveform is to use the user_define_file function.

There are two mandatory parameters that you must set for ALL waveforms.

Mandatory Parameters Implementation
Data Length data_length

Memory Depth memory_depth

Finally, there are five optional parameters that may be useful for your waveform.

Optional Parameters Implementation
Marker 1 marker1

Marker 2 marker2

Phase Reset Time 1 RESET_T1

Phase Reset Time 2 RESET_T2

Phase Reset Time 3 RESET_T3

Download data

The next step is to download all of the information stored in the computer memory to the memory on the
DSM. To do this for the built-in waveform you should use the download method.

For the User-Defined functions, whenever the functions are called the data is automatically downloaded to

the DSM memory.

Start memory

When in Free Run mode, start the memory by using the restart method.

For Master mode, use the arm method to arm the board. When armed, the Master board will wait for the
trigger signal then start the memory.

For Slave mode, use the slave_mode property to arm the board. When armed, the Master board will wait for
the trigger signal then start the memory.

Stop memory (optional)

With the absence of a stop command, the DSM will continue to chirp until the power is shut off. If you want
to stop the DSM memory use the stop method.

Methods -
Please click on a method in the menu on the left for a description of that method. All methods with the
exception of get_sn is part of the DSMX class. You must instantize an object of the DSMX class in order to
use any of those methods and you must instantize an object of the DSM_Group_API class to use the get_sn
method. You must use the "." operator to access any of the methods. In the examples, we have used an
example dsm object of the DSMX class and an example ug object of the DSM_Group_API class.

get_sn

Description

Syntax

Arguments

Return Value

Example

Notes

Retrieves the Series Number from the physical device.

C++
UInt16 get_sn(UInt16 deviceIndexNum)

deviceIndexNum the index number of the DSM device

seriesNumber Series Number of DSM device

int seriesNumber;
seriesNumber = ug.get_sn(0);

This method is part of the DSM_Group_API class. The Series Number is an unique number that
identifies each DSM board. You should always use this method to get the Series Number in order to
initialize the DSM board.

When this method returns with "0" it means that there were no DSM boards found. If you try to
initialize a DSMX object (using the ini method) with argument "0", your program will fail. You should
have a conditional test to test whether the get_sn function returns with "0" and if it does, to stop
further execution and display a message.

arm

Description

Syntax

Arguments

Return Value

Example

Notes

Arms DSM board in Master mode.

C++
void arm()

None

None

dsm.arm();

This function only arms the board in Master mode. It will not arm the board in Slave mode. To arm the board
in Slave mode, use the slave_mode property.

download

Description

Syntax

Arguments

Return Value

Example

Notes

Downloads the built-in waveform parameters to the DSM board.

C++
void download()

None

None

dsm.download();

This function is only needed to download the built-in waveform parameters (chirp1, chirp2, code, etc). If
you use the user_define_bulk or the user_define_file functions then you should NOT use this function.

flush

Description

Syntax

Arguments

Return Value

Example

Notes

Resets memory to starting memory address.

C++
void flush()

None

None

dsm.flush();

It is a good idea to reset the memory after you stop it. This member method along with the memory stop
method, stop, should usually be used together.

ini

Description

Syntax

Arguments

Return Value

Example

Notes

Initializes the DSM board.

C++
void ini(UInt32 series_number)

series_number Series Number of the DSM board

None

int seriesNumber = ug.get_sn(0);
dsm.ini(seriesNumber);

Please use the get_sn method to get the Series Number.

Always call the ini function immediately after instantiating a DSMX object!

When you call the ini function, some of the member properties will be initialized to their default
values. To see these default values, please see the Properties section main page.

memory_clock_toggle

Description

Syntax

Arguments

Return Value

Example

Notes

Toggles memory clock high or low.

C++
void memory_clock_toggle()

None

None

dsm.memory_clock_toggle();

When memory clock is high, this function will set it low; if memory clock is low, this function will set it high.

memory_data

Description

Syntax

Arguments

Return Value

Example

Notes

Retrieves the frequency word from memory

C++
UInt64 memory_data(UInt32 memAddress)

memAddress memory address

freqWord frequency word

unsigned freqWord;
unsigned memAddress = 0x0000A;
freqWord = dsm.memory_data(memAddress);

This method would be a helpful debugging tool should you ever need it.

parser

Description

Syntax

Arguments

Return Value

Example

Notes

Feeds commands to the DSM device

C++
void parser(String command)

command command being sent to the DSM device

None

dsm.parser ("d1 1000000");

When entering hexadecimal numbers using this method, you do not need to include the "0x" in front of the
number. Due to the way the parser is implemented, you should always append a newline character
following a parser command. You can either do this using the a member function in the intermediate class
discussed in the Getting Started section or you can use #define. For example, you can use the following
code:

#define Command(a) dsm.parser(a + "\n")

Now instead of typing dsm.parser("...") all the time, you can just type Command("...").

The recommended way of course is to just use a member function in the intermediate class to implement a
custom parser command function. An example of this is given in the MyDSM class in the example cldsm.cpp
file.

parser Commands

The use of the parser is greatly reduced in the new DSM firmware. Most of the commands are now implemented
as either methods or properties in the API classes. You should use those to manipulate the various DSM
properties and functions.

Command X Description

@ate X
0 Turns ASIC ATE off. (for fine timing adjustment)

1 Turns ASIC ATE on.

?status Inquire the DSM status

restart

Description

Syntax

Arguments

Return Value

Example

Notes

Starts memory.

C++
void restart()

None

None

dsm.restart();

When in Master or Slave mode, do not use this method to start the memory. Instead use the arm method to
arm the Master mode DSM or the slave_mode property to arm the Slave mode DSM. After arming, the
boards will wait for the trigger signal before starting the memory.

stop

Description

Syntax

Arguments

Return Value

Example

Notes

Stops the DSM memory.

C++
void stop()

None

None

dsm.stop();

It is a good idea to reset the memory after you stop it. This member method along with the memory reset
method, flush, should usually be used together.

USB_Reconnect

Description

Syntax

Arguments

Return Value

Example

Notes

Reconnects to USB after a disconnect between the computer and the DSM

C++
void USB_Reconnect()

None

None

dsm.USB_Reconnect();

You can use this method to reconnect to the DSM board if you accidently disconnect the USB cable or if DSM
was accidently turned off.

user_define_bulk

Description

Syntax

Arguments

Return Value

Example

Control Bit Words

Chirping with bulk memory.

C++
void user_define_bulk(UInt32* bulkMemory, UInt32 numOfPoints)
void user_define_bulk(UInt32* bulkMemory, UInt32* controlMemory, UInt32
numOfPoints)

bulkMemory Bulk memory that will be used for chirping
controlMemory Control bit words for each frequency
numOfPoints Number of frequencies to be chirped

None

int i;
unsigned *u = new unsigned[16];
unsigned *c = new unsigned[16];
const unsigned FC_START = 0x800000;
const unsigned FC_STEP = 0x1000000;

for(i=1, u[0]=FC_START; i<16; i++)
{
 if ((i-1) < 4)
 {
 c[i-1] = 3;
 u[i-1] = 0;
 continue;
 }

 u[i]=u[i-1]+FC_STEP;
 }

dsm.user_define_bulk(u, c, 16);

delete u;
delete c;

Notes

The control bit words are basically two control bits that represent phase reset and marker. Bit 0 (LSB)
controls whether the marker is high or low while bit 1 (second LSB) controls the phase reset. For the phase
reset bit, "0" turns phase reset off while "1" turns phase reset is on. For the marker bit, "0" turns marker low
while "1" turns marker high. Here is a table showing the possible combinations of the control bit:

Dec / Hex Binary Phase Reset Marker

0 / 0x0 00 Off Low

1 / 0x1 01 Off High

2 / 0x2 10 On Low

3 / 0x3 11 On High

This method will essentially chirp the frequency words that are stored in an array. Note that there are two
versions of this method. The method with two arguments will chirp with the frequency words in the bulk
memory array. The overloaded method with three arguments does the same but you also have the option of
setting the markers as well as reseting the phase on a point-by-point basis. This gives you more control than
setting the maker properties (marker1 and marker2) and the reset time properties (RESET_T1, RESET_T2,
and RESET_T3) that only allow you to have a range of points.

For example if you used the user_define_bulk method with two arguments and you wanted a chirp with
10,000 points then you can only set marker high for one range, say points 2000 through 3000. But if you use
the overloaded method with three arguements, then you have the option of setting marker high for points
2000 through 3000 and then points 7446 through 8564. The same goes with the phase reset option.

If you decide to use user_define_bulk with three arguments, the default setting if you do not specify a
control bit word in the control array is marker low and phase reset off or "0".

If you are using the user_define_bulk method with two arguments then you must set the marker1 and
marker2 properties. If you are using the overloaded user_define_bulk method with three arguments, the
marker1 and marker2 properties will be ignored and you must specify markers using the control array.

If you are using the user_define_bulk method with two arguments then you must set the RESET_T1,
RESET_T2, and RESET_T3 properties. If you are using the overloaded user_define_bulk method with three
arguments, the RESET_T1, RESET_T2, and RESET_T3 properties will be ignored and you must specify phase
reset using the control array. It is recommended that when you set phase reset using the control bit words
that you also set the corresponding frequency word to "0". For example if reset is turned on for points 100
through 199, the corresponding frequency words for those 100 points should be "0".

When you call the user_define_bulk method, the program will automatically download the data to the
DSM. There is no need use the download method.

user_define_file

Description

Syntax

Arguments

Return Value

Example

Notes

Loads custom user waveform files

C++
UInt32 user_define_file(String filename, Double clock)

filename file name of custom user file
clock frequency of the input clock

numOfPoints number of frequencies in user waveform file

unsigned numOfPoints;
Double clock = 2e9;
numOfPoints = dsm.user_define_file("user_defined_file.uwf", clock);

The user_define_file will chirp the contents of an external .uwf file provided that the file is formatted the
correct way. The file gives you complete control of the frequencies to chirp. Chirping is not limited to linear
chirps that are only available in built-in waveforms.

If you are using user_define_file and specify either #Type "1" or "2" then you must set the marker1 and
marker2 properties in order to get the correct markers. If you are using user_define_file and specify
either #Type "5" or "6", the marker1 and marker2 properties will be ignored and you must specify markers
with the control bit words within the .uwf file.

If you are using user_define_file and specify either #Type "1" or "2" then you must set the RESET_T1,
RESET_T2, and RESET_T3 properties in order to get the correct phase reset by memory options. If you are
using user_define_file and specify either #Type "5" or "6", the RESET_T1, RESET_T2, and RESET_T3
properties will be ignored and you must specify phase reset with the control bit words within the .uwf file.

When you call the user_define_bulk method, the program will automatically download the data to the
DSM. There is no need use the download method.

For more information regarding the .uwf file and how to format it please see the DSM Manual.

Properties -
Please click on a property in the menu on the left for a description of that property. All properties are part
of the DSMX class except number which is part of the DSM_API_Group class. You must create an object of
the DSMX class in order to use any of the properties in that class and you must create an object of the
DSM_Group_API class in order to use any of the properties in that class. In the examples, we have used an
example dsm object of the DSMX class and an example ug object of the DSM_Group_API class.

Default Property Values

The following is a list of default values that are set when you initialize the DSM with the ini method. If
you do not change these values in your own program, they will remain at these default values so be sure
to redefine these properties if you want to change waveform parameters.

Paging

page_number 4
page 0

Waveform

chirp1 0x1000000
chirp2 0x10000000
chirp3 0x1000000
RESET_T1 0
RESET_T2 0
RESET_T3 0
marker1 0x0
marker2 0x7
code 0
data_length 0x10
data_length_enable false
data_length_offset 0x192
dds_reset_by_memory false
delay 0
memory_depth 0x10

Mode

loop_count 0

Hardware Settings

over_sampling_rate 1
memory_dll true
marker_enable true
auto_armed true

synci_enable true
synco_enable true
slave_mode false

number

Description

Read

Write

Notes

Specifies how many boards are connected.

Gets how many boards are connected.

Example

int numOfBoards;
numOfBoards = ug.number;

Read-Only

This is part of the DSM_Group_API class.

auto_armed

Description

Read

Write

Notes

Specifies Auto-Arm status.

Gets status of Auto-Arm.

Example

bool autoArmStatus;
autoArmStatus = dsm.auto_armed;

Sets Auto-Arm status.

Example

dsm.auto_armed = false;

Usually you should only use Auto-Arm if you are in Master mode. For a more detailed explanation of
Auto-Arm please see the DSM manual.

chirp1

Description

Read

Write

Notes

Specifies the start frequency.

Gets current start frequency.

Example

unsigned wfChirp1;
wfChirp1 = dsm.chirp1;

Sets new start frequency.

Example

dsm.chirp1 = 0x1000000;

If you are using reverse chirping, the start frequency should be more than than the stop frequency.

chirp2

Description

Read

Write

Notes

Specifies the stop frequency.

Gets current stop frequency.

Example

unsigned wfChirp2;
wfChirp2 = dsm.chirp2;

Sets new stop frequency.

Example

dsm.chirp2 = 0x50000000;

If you are using reverse chirping, the stop frequency should be less than than the stop frequency.

chirp3

Description

Read

Write

Specifies the step frequency.

Gets current step frequency.

Example

unsigned wfChirp3;
wfChirp2 = dsm.chirp3;

Sets new step frequency.

Example

dsm.chirp3 = 0x10000000;

code

Description

Read

Write

Configurations

Notes

Specifies waveform code.

Gets the current waveform code.

Example

int wfCode;
wfCode = dsm.code;

Sets new waveform code.

Example

dsm.code = 1;

Code Description

0
Frequency ramps up from start frequency to stop frequency then goes back to start frequency.
Frequency vs. Time graph resembles sawteeth.

1
Frequency ramps up from start frequency to stop frequency then ramps down. Frequency vs.
Time graph resembles triangles.

2
Frequency ramps down from a higher frequency to a lower frequency then goes back to the
original higher frequency. In other words, the reverse of wave code "0".

For code "2" reverse chirping, chirp1 is still the start frequency and chirp2 is still the stop frequency. The
difference between reverse chirping and normal chirping is that the start frequency will be greater than the
stop frequency in reverse chirping.

data_length

Description

Read

Write

Notes

Specifies the Data Length which is the amount of memory addresses to make available for chirping. The
larger the Data Length, the more frequencies that can be output.

Gets the current Data Length.

Example

unsigned wfDL;
wfDL = dsm.data_length;

Sets the new Data Length.

Example

dsm.data_length = 0x40;

The Data Length should always be either shorter or equal to the Memory Depth. If you want the DSM to go
back to the starting frequency before reaching the Memory Depth, you should turn on the Data Length using
the data_length_enable property. You would use the Data Length if the number of frequencies you want
to chirp is not one of the Memory Depth settings. Please note that even if the Data Length is disabled, you
should still specify the correct Data Length. For example if the number of frequencies you want to chirp is
65,536 (which is one of the Memory Depth options) then you would set the Memory Depth to 65536 and
disable the Data Length but you still would need to set Data Length to the hexadecimal equivalent of 65536
(4000).

The Data Length is useful for users who want a duty cycle chirp. To do this, set the Data Length but set the
data_length_enable to "false". The DSM will chirp up to the Data Length then will output the start
frequency until it reaches the Memory Depth. To see the different patterns of chirps available, please see the
DSM Manual.

For users who want a duty cycle chirp but the total number of frequencies is not equal to one of the Memory
Depth settings, you can use the user_define_bulk or the user_define_file functions.

Data Length will not work for chirps that are under 1000 frequencies long even if you have Data Length
enabled.

data_length_offset

Description

Read

Write

Specifies the Data Length Offset. At 2.5 Ghz, it is best to set this to 0x192.

Gets current Data Length Offset.

Example

unsigned dataLengthOffset;
dataLengthOffset = dsm.data_length_offset;

Sets new Data Length Offset.

Example

dsm.data_length_offset = 0x192;

dds_reset_by_memory

Description

Read

Write

Notes

Specifies whether DDS phase reset should be controlled by memory.

Sees if phase reset is controlled by memory.

Example

bool phaseResetMem;
phaseResetMem = dsm.dds_reset_by_memory;

Enables or disables phase reset by memory.

Example

dsm.dds_reset_by_memory = true;

When phase reset is not controlled by memory, you can manually reset the phase by using the "R1" parser
command to turn on reset and "R0" parser command to turn off reset. Otherwise, when this property is set
to "true", phase reset is done through memory using the Reset Time properties (RESET_T1, RESET_T2,
RESET_T3) or using custom phase reset definitions with the user_define_bulk and user_define_file
functions.

delay

Description

Read

Write

Notes

Specifies the delay which is the number of memory addresses to keep at the start frequency before chirping
starts.

Gets current delay.

Example

unsigned wfDelay;
wfDelay = dsm.delay;

Sets new delay.

Example

dsm.delay = 0xFF;

Please note that the delay length is included in the Data Length and Memory Depth. This means that if you
had 100 frequencies to chirp and you had Memory Depth (or Data Length) set to 100 point and delay set to
10 points, then the DSM will output the start frequency for the first 10 points and then will only chirp the first
90 frequencies (including the start frequency) that you specified then start over again.

device_alias

Description

Read

Write

Specifies the Alias which is the model number of the device.

Gets the Alias of the device.

Example

String^ deviceAlias;
deviceAlias = dsm.device_alias;

Read-Only.

device_aux

Description

Read

Write

Specifies the Auxillary code of the device.

Gets the Auxillary code of the device.

Example

int deviceAuxCode;
deviceAuxCode = dsm.device_aux;

Read-Only.

device_cat

Description

Read

Write

Specifies the Category number of the device.

Gets the Category number of the device.

Example

int deviceCatNum;
deviceCatNum = dsm.device_cat;

Read-Only.

device_name

Description

Read

Write

Specifies the Name of the device.

Gets the Name of the device.

Example

String^ deviceName;
deviceName = dsm.device_name;

Read-Only.

device_sn

Description

Read

Write

Specifies the Series Number of the device.

Gets the Series Number of the device.

Example

int seriesNumber;
seriesNumber = dsm.device_sn;

Read-Only.

device_subcat

Description

Read

Write

Specifies the Subcategory of the device.

Gets the Subcategory of the device.

Example

int deviceSubcategory;
deviceSubcategory = dsm.device_subcat;

Read-Only.

Dump Directory

Description

Read

Write

Specifies where to save memory dump files.

Gets the current location of memory dump files.

Example

String^ dumpDirectory;
dumpDirectory = dsm.Dump_Directory;

Sets new location for memory dump files. Specified as a string so must have double quotes.

Example

dsm.File_Directory = ".\MD";

File_Directory

Description

Read

Write

Specifies where to save and load waveform files.

Gets the current location of waveform files.

Example

String^ fileDirectory;
fileDirectory = dsm.File_Directory;

Sets new location for waveform files. Specified as a string so must have double quotes.

Example

dsm.File_Directory = ".__WF";

firmware_alias

Description

Read

Write

Specifies the Alias of the firmware.

Gets the Alias of the firmware.

Example

String^ fwAlias;
fwAlias = dsm.firmware_alias;

Read-Only.

firmware_aux

Description

Read

Write

Specifies the Auxillary code of the firmware.

Gets the Auxillary code of the firmware.

Example

int fwAuxCode;
fwAuxCode = dsm.firmware_aux;

Read-Only.

firmware_cat

Description

Read

Write

Specifies the Category of the firmware.

Gets the Category of the firmware.

Example

int fwCatNum;
fwCatNum = dsm.firmware_cat;

Read-Only.

firmware_name

Description

Read

Write

Specifies the Name of the firmware.

Gets the Name of the firmware.

Example

String^ fwName;
fwName = dsm.firmware_name;

Read-Only.

firmware_subversion

Description

Read

Write

Specifies the Subversion of the firmware.

Gets the Subversion of the firmware.

Example

int fwSubversion;
fwSubversion = dsm.firmware_subversion;

Read-Only.

firmware_version

Description

Read

Write

Specifies the Version of the firmware.

Gets the Version of the firmware.

Example

int fwVersion;
fwVersion = dsm.firmware;

Read-Only.

loop_count

Description

Read

Write

Notes

Specifies the loop count of the chirp.

Gets the current loop count.

Example

unsigned loopCount;
loopCount = dsm.loop_count;

Sets the new loop count.

Example

dsm.loop_count = 0xA;

When this property is set to "0", the loop count is set to infinite so the DSM will be in Free Run mode. Be
sure to set this property at the start of every chirp especially if you want the DSM to be operated in Free Run
mode. Failure to set loop_count might result in unpredictable behavior by the DSM.

marker1

Description

Read

Write

Notes

Specifies when the marker signal goes high from low.

Gets the current marker1 memory address.

Example

unsigned fwMarker1;
fwMarker1 = dsm.marker1;

Sets a new marker1 memory address.

Example

dsm.marker1 = 0x10;

Be sure that the markers are turned on. You can set marker settings with the marker_enable property.

marker2

Description

Read

Write

Notes

Specifies when the marker signal goes back low.

Gets the current marker2 memory address.

Example

unsigned fwMarker2;
fwMarker2 = dsm.marker2;

Sets a new marker2 memory address.

Example

dsm.marker2 = 0x5000;

Be sure that the markers are turned on. You can set marker settings with the marker_enable property.

marker_enable

Description

Read

Write

Notes

Specifies marker signal status.

Gets markers status.

Example

bool markerStatus;
markerStatus = dsm.marker_enable;

Sets new markers status.

Example

dsm.marker_enable = true;

If you turn on the markers, be sure to set the marker properties (marker1 and marker2).

memory_clock

Description

Read

Write

Notes

Toggles memory clock either low or high;

Write-Only

Toggles memory clock for "1" and "0" for low.

Example

dsm.memory_clock = 0;

You should only toggle the memory clock when the memory is stopped.

memory_clock_advance

Description

Read

Write

Notes

Specifies how many memory addresses to skip.

Write-Only

Advances memory by amount user specifies.

Example

dsm.memory_clock_advance = 6;

You should only advance the memory address when the memory is stopped.

memory_depth

Description

Read

Write

Notes

Specifies the Memory Depth which is the maximum number of memory addresses to make available in the
device.

Gets the current Memory Depth.

Example

unsigned memoryDepth;
memoryDepth = dsm.memory_depth;

Sets a new Memory Depth.

Example

dsm.memory_depth = 0x40000;

Memory Depth is a hardware limited setting. There are only nine available settings for Memory Depth:

Decimal Hex
16 10
64 40
256 100
1024 400
4096 1000
16384 4000
65536 10000
262144 40000
524288 80000

If the number of frequencies in your chirp is not equal to one of the nine above settings, you must set the
Data Length using the data_length property.

When you set the memory_depth property, the page_memory_depth property will also be changed. Changing
one will change the other. Also, please note that the total Memory Depth available is dependent on the
number of pages. If you have configured the DSM to 1 page, then the maximum Memory Depth available per

page will be 524288. If you have 2 pages enabled, then the maximum Memory Depth available per page is
262144. If you have 4 pages enabled, then the maximum Memory Depth will be 131072. Note that 131072
(Hex 20000) is not available as a Memory Depth setting. To get around this, you will have to set Memory
Depth to 262144 and then set Data Length to 131072.

memory_dll

Description

Read

Write

Notes

Gets memory DLL status.

Sees if memory DLL is on or off.

Example

bool memDLLStatus;
memDLLStatus = dsm.memory_dll;

Sets new memory DLL status.

Example

dsm.memory_dll = true;

For a more detailed explanation of the memory DLL please see the DSM manual.

memory_dump

Description

Read

Write

Specifies if Memory Dump is enabled. If Memory Dump is enabled, the program will dump memory to a .dat
file with the Waveform Name (method get_WF_name) into the Memory Dump location (property
Dump_Directory).

Gets the current status of Memory Dump. Specified in boolean.

Example

bool memoryDumpEnabled;
memoryDumpEnabled = dsm.memory_dump;

Sets Memory Dump either on or off. Specified in boolean.

Example

dsm.memory_dump = true;

over_sampling_rate

Description

Read

Write

Notes

Specifies the oversampling factor.

Gets the current oversampling factor.

Example

int oversamplingFactor;
oversamplingFactor = dsm.over_sampling_rate;

Sets new oversampling factor.

Example

dsm.over_sample_rate = 2;

When this property is set to "1", the oversampling factor is 1. When set to "2", the oversampling factor is 2.
When set to "3", the oversampling factor is 4. For more information regarding the oversampling factor,
please see the DSM manual.

page

Description

Read

Write

Notes

Specifies the current page.

Gets the current page.

Example

int currentPage;
currentPage = dsm.page;

Sets to a new page.

Example

dsm.page = 1;

When there is only one page, only Page 0 is available. When there are two pages, Page 0 and 1 are
available. When four pages are available, Page 0, 1, 2, and 3 are available. There is also a parser command
that sets this property.

page_memory_depth

Description

Read

Write

Notes

Specifies the memory depth available for each page.

Gets current memory depth available per page.

Example

unsigned memDepthPerPage;
memDepthPerPage = dsm.page_memory_depth;

Read-Only

This property is the same as the memory_depth property. Changing one will change the other. Please read
the memory_depth page for restrictions on the Memory Depth.

page_number

Description

Read

Write

Notes

Specifies how many memory pages there are.

Gets how many memory pages there.

Example

int numOfPages;
numOfPages = dsm.page_number;

Sets new number of memory pages.

Example

dsm.page_number = 4;

The value for this property should correspond with the hardware paging settings. To see how to configure
the hardware paging settings please see the DSM Manual.

RESET_T1

Description

Read

Write

Notes

Specifies the TRESET1 time.

Gets current TRESET1 time.

Example

unsigned resetT1;
resetT1 = dsm.RESET_T1;

Sets new TRESET1 time.

Example

RESET_T1 = 0;

For a more detailed discussion of the TRESET2 time, please see the DSM Manual.

Please note that the reset length is included in the Data Length and Memory Depth. This means that if you
had 100 frequencies to chirp and you had Memory Depth (or Data Length) set to 100 points and reset set to
10 points, then the DSM will output the reset for the first 10 points and then will only chirp the first 90
frequencies that you specified then start over again.

RESET_T2

Description

Read

Write

Notes

Specifies the TRESET2 time.

Gets current TRESET2 time.

Example

unsigned resetT2;
resetT2 = dsm.RESET_T2;

Sets new TRESET2 time.

Example

RESET_T2 = 0;

It is recommended that you set this property to at least 5 if you are going to use the phase reset by memory
option. For a more detailed discussion of the TRESET2 time, please see the DSM Manual.

Please note that the reset length is included in the Data Length and Memory Depth. This means that if you
had 100 frequencies to chirp and you had Memory Depth (or Data Length) set to 100 points and reset set to
10 points, then the DSM will output the reset for the first 10 points and then will only chirp the first 90
frequencies that you specified then start over again.

RESET_T3

Description

Read

Write

Notes

Specifies the TRESET3 time.

Gets current TRESET3 time.

Example

unsigned resetT3;
resetT3 = dsm.RESET_T3;

Sets new TRESET3 time.

Example

RESET_T3 = 3;

It is recommended that you set this property to at least 3 if you use the phase reset by memory option. For
a more detailed discussion of the TRESET2 time, please see the DSM Manual.

Please note that the reset length is included in the Data Length and Memory Depth. This means that if you
had 100 frequencies to chirp and you had Memory Depth (or Data Length) set to 100 points and reset set to
10 points, then the DSM will output the reset for the first 10 points and then will only chirp the first 90
frequencies that you specified then start over again.

slave_mode

Description

Read

Write

Notes

Specifies the Slave mode status.

Gets current Slave mode status.

Example

bool slaveModeStatus;
slaveModeStatus = dsm.slave_mode;

Sets new Slave mode status.

Example

dsm.slave_mode = false;

If you intend to be in Master or Slave mode, please remember to set the loop count with the loop_count
property.

This property is also used to arm the Slave mode board. To arm the board, simply set the property to "true":

dsm.slave_mode = true;

status

Description

Read

Write

Configurations

Specifies updated status of device.

Gets the status of the device. Refer to table below for description of status configurations.

Example

unsigned deviceStatus;
deviceStatus = dsm.status;

Read-Only

Decimal Hex Code Binary Code Status

1 0x1 00000001 Armed

2 0x2 00000010 Triggered

4 0x4 00000100 In Loop

8 0x8 00001000 Auto-Armed

16 0x10 00010000 Slave

32 0x20 00100000 Slave Wait

64 0x40 01000000 Infinite Loop

128 0x80 10000000 Data Length Enabled

Note that the device can be simutaneously be in multiple states. In binary code, each "1" bit represents a
state. If there is more than one state, then the binary code will have multiple "1" bits. For example if the
device was Armed, Triggered, In Loop and Auto-Armed, then the binary code would be "00001111". Status
can be output in any format so it is best to output it in binary code.

synci_enable

Description

Read

Write

Notes

Specifies internal SYNCI status.

Gets status of internal SYNCI.

Example

bool synciStatus;
synciStatus = dsm.synci_enable;

Sets new internal SYNCI status.

Example

dsm.synci_enable = false;

For more information on the Internal SYNCI signal please see the DSM manual.

synco_enable

Description

Read

Write

Notes

Specifies SYNCO signal status.

Gets current status of SYNCO signal.

Example

bool syncoStatus;
syncoStatus = dsm.synco_enable;

Sets new SYNCO signal status.

Example

dsm.synco_enable = true;

The SYNCO signal should normally only be used to synchronize a Slave board. The SYNCO signal is always
off when in Slave mode regardless of the synco_enable setting.

synco_T1

Description

Read

Write

Notes

Specifies the TSYNC1 time.

Gets the current TSYNC1 time.

Example

unsigned tSync1;
tSync1 = dsm.synco_T1;

Sets a new TSYNC1 time. Minimum value of "0x0" and maximum value of "0xFF" (255).

Example

dsm.synco_T1 = 0xAA;

This property is only available if SYNCO is enabled with the synco_enable property. For a more detailed
discussion of the TSYNC1 time, please see the DSM Manual.

synco_T2

Description

Read

Write

Notes

Specifies the TSYNC2 time.

Gets the current TSYNC2 time.

Example

unsigned tSync2;
tSync2 = dsm.synco_T2;

Sets a new TSYNC2 time. Specified. Minimum value of "0x0" and maximum value of "0xFF" (255).

Example

dsm.synco_T2 = 0xBB;

This property is only available if SYNCO is enabled with the synco_enable property. For a more detailed
discussion of the TSYNC1 time, please see the DSM Manual.

Helpful Tips -
This section will hopefully help you solve some of the more common problems that we have observed when
making a program with the API.

General -
All of the following tips assume that you have created an intermediate class with individual member functions
to interact with the API methods and properties. This practice is very much recommended.

Bundle various parser commands, API method calls and property definitions in your intermediate
functions for related DSM activities. For example to stop memory, you would use the stop method,
then the flush method. For examples of bundling commands, please take a look at the example
MyDSM class in the implementation file below. Some of the functions which use bundling include:
download(), startMem(), stopMem(), setToMaster(), and setToSlave().

cldsm.cpp

Be sure to have the general order of commands as listed on the Basic Structure page in the Getting
Started section.

It is recommended that you always stop the memory at the beginning of a new chirp definition.

When downloading data into the DSM, create a delay between the time you start downloading and the
time you start the memory. This will ensure that all of the data that you have stored on the computer
will be downloaded correctly to the DSM. For longer Memory Depth chirps, this is especially important.
The delay will be dependent on your system resources. You can experiment with the delay time by
using the DSM GUI by downloading waveforms of various Memory Depth.

As already stated on the data_length properties page, when you want to perform a duty cycle chirp
and the total number of frequencies is equal to one of the nine Memory Depth settings, you should turn
off Data Length Enable and set the Data Length to the number of non-constant frequency points. If
your total number of points is not equal to one of the nine Memory Depth settings, then you must either
use the user_define_bulk or the user_define_file functions.

Multi-Board -
Listed below are the recommended sequence of commands to put DSM into Master mode. These
commands can be combined in a intermediate class member function.

dsm.slave_mode = false;
dsm.auto_armed = true;
dsm.synci_enable = true;
dsm.synco_enable = true;

When you want to arm the Master DSM board to wait for the trigger signal, do not use the restart
method (as you do in Free Run Mode). Instead use the arm method. The arm command will only arm
the Master board, not the Slave board.

Listed below are the recommended sequence of commands to put DSM into Slave mode.

dsm.slave_mode = true;
dsm.auto_armed = false;
dsm.synci_enable = false;

To arm the Slave board to wait for the SYNCI signal, use the slave_mode property, not the arm or
restart methods.

For either Master or Slave mode, be sure to specify the loop count to a non-zero, non-negative number.
If you fail to do this then the board will use the last specified loop count setting (default is 0) in which
case your board might be in Free Run mode.

We recommend that you stop the memory before arming either the Master or Slave boards. This has
the effect of stabilizing the hardware.

Debugging -
You can have the GUI open when you are running your own program. The GUI can be a big help when
you need to debug your program. Make sure that you use the USB Reconnect command before using it.

You can use the GUI to check the status of the DSM. You can also stop the DSM memory with it and
check the data in memory.

All parser commands are sent to the DSM301.log file in your program's .exe folder.

The easiest way to see whether Data Length is enabled is to set the Data Length to half of the Memory
Depth and the markers to half of the Data Length. If the marker has a half duty cycle, then Data Length
is on (marker runs to half of the Data Length). But if the marker has a quarter duty cycle, then the DSM
is not running up to the Data Length (marker is a quarter of Memory Depth).

Examples -
Please choose an example in the menu to see an example. The Solution files for the two examples are zipped
and can be found in the "Example" folder in your DSM folder that you specified during installation. The default
location is C:\Program Files\Euvis\DSM\Example.

Please note that you must re-reference the DSM_CLR.dll API file for the examples. To do this, follow the
instructions as detailed on the API Reference page.

For convenience, we have provided the header files and implementation files for the intermediate classes
below. The souce code for each example can be found on the individual example pages.

dsmgroup.h
dsmgroup.cpp

cldsm.h
cldsm.cpp

General Waveforms -

This example will take you through the major functions of the DSM. The source code is located in the "basics"
folder in your "Examples" folder. Each example within the program's output is shown below. For the
oscilloscope images, the top trace is of the actual waveform while the bottom trace is of the marker. For the
spectrum images, the bandwidth is set from 0 to the Nyquist frequency of 1 GHz (clock is set to 2 GHz).

For convenience here is the source code:

basics.cpp

Example 1

This example is just a simple 16-point waveform.

When pointwise chirping:

Example 2

This example is the the same as the above but this time uses the user_define_bulk method to define the
waveform.

Example 3

This example demonstrates the use of the user_define_bulk method to create a duty cycle chirp. The marker
is set to high when the DSM is chirping the non-constant frequencies and low when its outputs the constant
frequencies.

Example 4

This example once again uses the user_define_bulk method to create a period based chirp. Please take a look
at the code to see how it is implemented.

Example 5

This example utilizes the user_define_file method to chirp frequencies that are stored in an external .uwf file.

Example 6

This example makes use of the different pages of the DSM. The DSM is set to 4 pages and the images show the
output of each page. The images in order from top to bottom are: Page 0, 1, 2 and 3.

Example 7

This example is just a combination of the above waveforms separated into different pages. The output for each
page should resemble the output images shown above.

Example 8

This example demonstrates the multi-board functions of the DSM. The DSM should only run when there is a
trigger signal for the Master board and a SYNCI signal for the Slave board. The recommended trigger signal for
Master mode is a 1 V peak to peak square wave with a DC offset of 0.5 V. For Slave mode, the only SYNCI signal
should be the SYNCO signal from the Master board. The images below show the spectrum for the Master board
on the left and the Slave board on the right.

New Features -

This example will demonstrate the new features of the API, mainly the DDS phase reset and reverse chirping
capabilities.

For convenience here is the source code:

new.cpp

Example 1

This example demonstrates the new phase reset by memory feature. The top images are that of a waveform
with no phase reset by memory. The waveform is unclear since the scope is unable to get a phase lock even
with trigger by marker. The bottom images show the same waveform but this time with phase reset by
memory turned on. Now, every time the DSM starts to chirp, the waveform will start at the same phase. The
oscilloscope is now able to get a lock on to the waveform when triggered by marker.

Example 2

This example shows a waveform that uses the new overloaded user_define_bulk method.

Example 3

This example demonstrates the reverse chirping feature.

Example 4

This example does the same thing as Example 3 but uses the user_define_bulk method instead of the
waveform built-in properties.

Appendix -

Jan 30, 2008

New API version 2.2 updates:

Most parser commands have been omitted from manual but they still function. All commands
have been replaced with either methods or properties. If you used parser commands
previously please look in the Methods and Properties section to see the new commands.
Two additional status bits have been added to the MSB. The two new status bits are "Data
Length Enable" and "Infinite Loop". Please see the status property page for more
information.
There is no need to send the "r2" command for Memory Depth. To set Memory Depth you
only need to set the memory_depth property.
New phase reset by memory option added.
New waveform code "2" for reverse chirping.
New overloaded user_define_bulk method. Please see the method page for more
information.
New examples in Examples section with more detailed code and utilizing an intermediate
class to interact with the API methods and properties.

DSM A1

For users who have the DSM A1 board, there are some properties that are either unavailable to you or will
require adjustments. The commands are detailed below:

All multi-board commands are unavailable.
The status command is unavailable.
The memory DLL command is unavailable.
The start and stop memory commands will behave a little bit differently.
The default oversampling rate should be set to "2" since the clock divider on the A1 board is
different.

